Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Neng-Fang She, Sheng-Li Hu, Hui-Zhen Guo and An-Xin Wu*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.053$
$w R$ factor $=0.136$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
6,9-Dibromo-2a,10b-diphenyl-2a,5,10,10b-tetrahydro-2H,3H-2,3,4a,10a-tetraaza-benzo[g]cyclopenta[cd]azulene-1,4-dione monohydrate

The title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, forms a supramolecular structure via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.

Comment

Glycoluril and its derivatives have been studied extensively for a variety of purposes. In particular, they have been investigated as building blocks for the construction of rigid host molecules (Rowan et al., 1999; Wu et al., 2002). The title compound, (I), is an important intermediate in the preparation of methylene-bridged glycoluril dimers (Wu et al., 2002) and its structure is reported here (Fig. 1 and Table 1). The crystal structure of an analog, 6,9-dibromo-1,4-dioxo-1,2,3,4,5,10-hexahydro-2,3,4a,10a-tetraaza-benzo[g]cyclopenta $[c d]$ azulene-2a,10b-dicarboxylic acid diethyl ester, was reported previously (She et al., 2005).

(I)

In the crystal structure, molecules are interlinked via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). Each water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor. No $\pi-\pi$ stacking can be observed in the crystal structure.

Experimental

The title compound was synthesized according to the procedure reported by Wu et al. (2002). Crystals appropriate for data collection were obtained by slow evaporation of a methanol-chloroform (1:30 $\mathrm{v} /$ v) solution at 283 K .

Received 27 March 2006
Accepted 31 March 2006

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=572.26$
Monoclinic, $P 2_{1} / c$
$a=13.066$ (2) A
$b=9.9260(15) \AA$
$c=18.351$ (3) \AA
$\beta=106.539$ (3) ${ }^{\circ}$
$V=2281.5(6) \AA^{3}$
$Z=4$
$D_{x}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=3.59 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Prism, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART 4K CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick 1997)
$T_{\text {min }}=0.412, T_{\text {max }}=0.534$
(expected range $=0.377-0.488)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.136$
$S=1.05$
5151 reflections
306 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0625 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 8$	$1.521(8)$	$\mathrm{C} 10-\mathrm{O} 2$	$1.236(7)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.520(9)$	$\mathrm{C} 10-\mathrm{N} 4$	$1.333(7)$
$\mathrm{C} 9-\mathrm{N} 3$	$1.367(8)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.509(8)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$114.4(5)$	$\mathrm{N} 3-\mathrm{C} 18-\mathrm{N} 4$	$111.9(5)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{N} 4$	$127.2(5)$	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 11$	$117.8(4)$
$\mathrm{Br} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-3.0(8)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 18$	$168.2(6)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15 . ${ }^{\text {O }} 1^{\text {i }}$	0.93	2.58	3.432 (9)	152
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.08	2.901 (6)	158
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 3^{\text {ii }}$	0.86	2.46	2.950 (7)	117
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.88 (5)	1.91 (5)	2.786 (6)	171 (5)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y+1, z$.
H atoms of the water molecule were located in a difference Fourier map and freely refined with fixed isotropic displacement parameters. All other H atoms were positioned geometrically and treated as riding, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$. $U_{\text {iso }}(\mathrm{H})$ values were set equal to $x U_{\text {eq }}$ (carrier atom), where $x=1.2$ for CH_{2} and CH or $x=1.5$ for N .

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figure 1
The asymmetric unit of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
Hydrogen bonding in the crystal structure of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

The authors are grateful to the Central China Normal University and the Hubei Province Natural Science Fund (Nos. 2004ABA085 and No.2004ABC002) for financial support.

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Rowan, A. E., Elemans, J. A. A. W. \& Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.
Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
She, N., Guo, H., Wang, Z. \& Wu, A. (2005). Acta Cryst. E61, o2549-o2550.
Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. \& Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.

[^0]: © 2006 International Union of Crystallography All rights reserved

